

Modification Record					
No.	Last Report No.	Modification Description			
1	EED39O816777	First report	U		

TABLE OF CONTENTS

1. GENERAL INFORMA			
2. TEST SUMMARY			
3. MEASUREMENT UNC			
4. PRODUCT INFORMA			
5. FACILITIES AND ACC	CREDITATIONS		7
			7
5.2 TEST EQUIPN	IENT LIST		7
5.3 LABORATOR	Y ACCREDITATIO	NS AND LISTINGS	10
6. CONDUCTED EMISSI	ON		
6.1 LIMITS	,		
6.2 BLOCK DIAG	RAM OF TEST SET	TUP	
6.3 TEST PROCE	DURE		
7. RADIATED EMISSION	۹		
7.1 LIMITS			
7.2 BLOCK DIAG	RAM OF TEST SET	TUP	
7.3 TEST PROCE	DURE		
7.4 GRAPHS AND) DATA	(20)	
8. HARMONIC CURREN	T EMISSION		
8.2 BLOCK DIAG	RAM OF TEST SE	ГUР	
8.3 TEST PROCE	DURE	*	
8.4 TEST RESULT	TS		
9. VOLTAGE CHANGES	. VOLTAGE FLUC	TUATIONS AND	
			<u>2</u> 1
10. IMMUNITY TEST			
10 1 4 RES	III T & PERFORM	ANCE	
		CY, ELECTROMAGN	
	FAST TRANSIEN		25 Y27
(C) 10.4.1 (ES		577	
Q/CTI LD-SUCEED-1007	Vers	ion 1.0	Page 3 of 43

CTI华测检测

10.4.2 BLOCK DIAGRAM OF TEST SETUP	28
10.4.3 TEST PROCEDURE	28
10.4.4 RESULTS & PERFORMANCE	
10.5 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY	
RADIO-FREQUENCY FIELDS	29
10.5.1 TEST SPECIFICATION	29
10.5.2 BLOCK DIAGRAM OF TEST SETUP	29
10.5.3 TEST PROCEDURE	29
10.5.4 RESULTS & PERFORMANCE	
10.6 POWER-FREQUENCY MAGNETIC FIELDS IMMUNITY	30
10.6.1 TEST SPECIFICATION	30
10.6.2 BLOCK DIAGRAM OF TEST SETUP	30
10.6.3 TEST PROCEDURE	30
10.6.4 RESULTS & PERFORMANCE	30
10.7 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE	
VARIATIONS	31
10.7.1 TEST SPECIFICATION	31
10.7.2 BLOCK DIAGRAM OF TEST SETUP	
10.7.3 TEST PROCEDURE	
10.7.4 RESULTS & PERFORMANCE	
APPENDIX 1 PHOTOGRAPHS OF PRODUCT	
APPENDIX 2 PHOTOGRAPHS OF PRODUCT	

1. GENERAL INFORMATION

Applicant& Address:	Zhejiang Grandway Te 6 Building,No.8 Hain Province	elecom Tech. Co., Ltd ing Avenue,Haining ,H	laining City,Zhejiang
Manufacturer&	Shanghai Grandway T	elecom Tech. Co., Ltd.	
Address:	6F, Xin'an Building No	.99 Tian Zhou Road, S	hanghai China
EMC Directive:	2014/30/EU		
Product:	Fiber Fusion Splicer		
Trade mark:	Grandway		
Model/Type reference:	GS-601		
Serial Model:	GS-901		
Report Number:	EED39O816777		
State of Sample(s):	Normal		
Sample Received Date:	Oct 25,2022		
Sample tested Date:	Nov 01,2022 to Feb 10	6,2023	
			e 1

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

2. TEST SUMMARY

The Product has been tested according to the following specifications:

	EMISSION	
Standard	Test Item	Test
CISPR 11:2015+A1:2016	Conducted Emission	Yes
CISPR 11:2015+A1:2016	Radiated Emission	Yes
EN IEC 61000-3-2:2019	Harmonic current emission	Yes
EN 61000-3-3:2013+A1:2019	Voltage changes,voltage fluctuations and flicker	Yes
IMI	MUNITY (EN 61326-1:2013)	
Standard	Test Item	Test
IEC 61000-4-2:2008	Electrostatic discharge Immunity	Yes
IEC 61000-4-3:2020	Radiated, radio-frequency, electromagnetic field immunity	Yes
IEC 61000-4-4:2012	Electrical fast transient/burst immunity	Yes
IEC 61000-4-5:2014+AMD1:2017	Surge Immunity	Yes
IEC 61000-4-6:2013	Immunity to conducted disturbances, induced by radio-frequency fields	Yes
IEC 61000-4-8:2009	Power-frequency magnetic field Immunity	Yes
IEC 61000-4-11:2020	Voltage dips, short interruptions and voltage variations Immunity	Yes

Report No. : EED39O816777

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)	
Conducted emission	+/- 3.43	
Radiated emission (30MHz to 1GHz)	+/- 4.53	

4. PRODUCT INFORMATION AND TEST SETUP

4.1 PRODUCT INFORMATION

Ratings:	Input:AC 100-240V(50/60HZ)
Addings.	Output:DC 11-13.5V
The highest frequency of the internal sources of the EUT	
is (less than 108 MHz)MHz:	between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
	between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.
	above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.
Adapter information:	N/A
Model difference:	Models of the product are GS-601,GS-901.
(Provided by the customer)	The test model is GS-601
	The same point are color, structure, circuit principle, PCB board and key elements,The difference are motor number,
	power, weight, shape and size.

1.20.1		Land March 1
马达数量	6个	2 个
功率	64W	80W
重量	2.45KG	2.3KG
形状大小	156mm(L)×141mm(W)×156mm(H)	155mm (L)×144mm (W)×155mm (H)

4.2 TEST SETUP CONFIGURATION

See test photographs attached in APPENDIX 1 PHOTOGRAPHS OF TEST SETUP for the actual connections between Product and support equipment.

Q/CTI LD-SUCEED-1007

Version 1.0

4.3 DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a 1. configuration, which produced the worst emission levels, was selected and recorded in this report.

The following test mode(s) were scanned during the preliminary test:

Pre Test M	ode		
Emission	Conducted Emission	Mode 1: Normal Operation while charging	
	Radiated Emission	Mode 1: Normal Operation while charging	

2. After the preliminary scan, the following test mode was found to produce the final emission level.

	Final Test I	Vlode	
	F arrissian	Conducted Emission	Mode 1: Normal Operation while charging
	Emission	Radiated Emission	Mode 1: Normal Operation while charging
T)	on the sh	ove highest emission mo	de of the configuration of the ELIT and cable

Then, the above highest emission mode of the configuration was chosen for all final test items.

5. FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All test facilities used to collect the test data are located at Building 18, Zhihui New Town Ecological Industrial Park, No. 1206, Jinyang East Road, Lujia Town, Kunshan, Jiangsu, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4, CISPR 16-1-1 and other equivalent standards.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing. The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

	Conducted Emission Test					
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due		
Receiver	R&S	ESR3	102043	2023-12-07		
LISN	R&S	ENV4200	100325	2023-12-07		
LISN	R&S	ENV216	102058	2023-12-07		
ISN	R&S	ENY81	100255	2023-12-07		
ISN	R&S	ENY81-CA6	101744	2023-12-07		
Pulse limiter	SCHWARZBECK	VTSD9561F	00227	2023-12-07		
Software	R&S	EMC32	9.26.01	1		
S*)	(3)	$(c^{(n)})$	(c^{γ})	(ć		

Q/CTI LD-SUCEED-1007

Hotline:400-6788-333 www.cti-cert.com

Page 7 of 43

Radiated Emission Test				
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
3MChamber	RIKEN	9.25(L)m*6.25(W) m*6.45(H)m	AC-K	2024-09-06
Receiver	R&S	ESU8	100537	2023-12-07
Spectrum analyzer	R&S	FSV40	101185	2023-12-07
Microwave Preamplifier	R&S	SCU-18D	1987397	2023-12-07
Antenna (30MHz~1GHz)	SCHWARZBECK	VULB9163	9163-965	2023-10-21
Software	Fala	EZ-EMC	03A1	

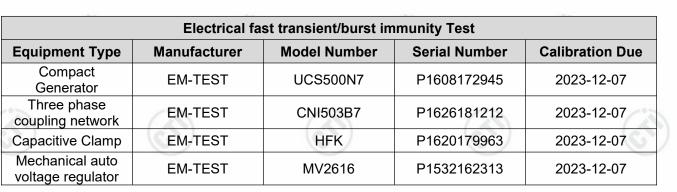
	Harmo	onic current emissio	n Test	
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
Harmonic& Flicker System	PPST	ECTS2-3600F- M18012	550118	2023-08-17

	Voltage changes	, voltage fluctuation	s and flicker Test	
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
Harmonic& Flicker System	PPST	ECTS2-3600F- M18012	550118	2023-08-17

	Electros	tatic discharge Immu	unity Test	
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
ESD Simulator	Noiseken	ESS-B3011A	ESS1940818	2023-12-07
Digital hygrometer	Testo	608-H1	1945222595	2023-11-01

Ra	diated, radio-frequ	ency, electromagne	tic field immunity Te	est
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
3MChamber		9.25(L)m*6.25(W) m*6.45(H)m	AC-K	2024-09-06
Radiated immunity test system	TESEQ	ITS 6006	77394	2023-11-30
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	00131	NCR
Power Amplifier (80MHz~1GHz)	TESEQ	CBA 1G-600B	T2491-0819	2024-01-13
Power Amplifier (1GHz~6GHz)	MILMEGA	AS0860B-50/50	1087034	2023-12-01
Power Meter	TESEQ	PMU 6006	77681	2023-12-01
Power Meter	TESEQ	PMU 6006	77688	2023-12-01

Q/CTI LD-SUCEED-1007



Surge Immunity Test								
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due				
Compact Generator	EM-TEST	UCS500N7	P1608172945	2023-12-07				
Coupling/decoupli ng network	EM-TEST	CNI503B7	P1626181212	2023-12-07				
Coupling/decoupli ng network	EM-TEST	CNV504N2	P1613178139	2023-12-07				
Coupling/decoupli ng network	EM-TEST	CNV504T5	P1612177946	2023-12-07				
Coupling/decoupli ng network	EM-TEST	CNI508N2	P1618179278	2023-12-07				
Mechanical auto voltage regulator	EM-TEST	MV2616	P1532162313	2023-12-07				

Immunity	to conducted distu	ırbances, induced b	y radio-frequency fi	elds Test
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
Signal generator	TESEQ	NSG 4070C-35	54406	2023-12-07
CDN	FCC	FCC-801-M2/M3- 16A	170209	2023-12-07
CDN	FCC	FCC-801-M5-32A	170212	2023-12-07
Eight-wire communication line coupled de- coupling network	TESEQ	Т800	51992	2023-05-25
Electromagnetic injection clamp	FCC	F-203I-A-32mm	192109	2023-12-07
	FCC	F-203I-A-32mm	192109	2023-1

	Power-frequ	uency magnetic field	ds immunity	
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
Programmable AC and DC sources	TESEQ	NSG1007-03-240	1926A02176	2023-11-30
Power frequency magnetic field suite	AMETEK	Option 8-300	1459	2023-12-07

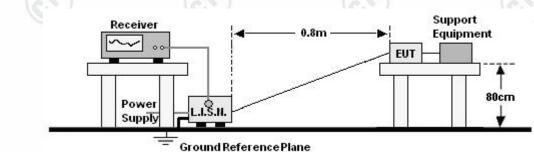
Q/CTI LD-SUCEED-1007

Volta	ge dips, short interr	uptions and voltage	variations Immunity	y Test
Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due
Harmonic& Flicker System	PPST	ECTS2-3600F- M18012	550118	2023-08-17

5.3 LABORATORY ACCREDITATIONS AND LISTINGS

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

CONDUCTED EMISSION 6.


6.1 LIMITS

Frequency range	Limits d	Β(μV)
(MHz)	Quasi-peak	Average
0.15 - 0.50	79	66
0.50 - 30	73	60

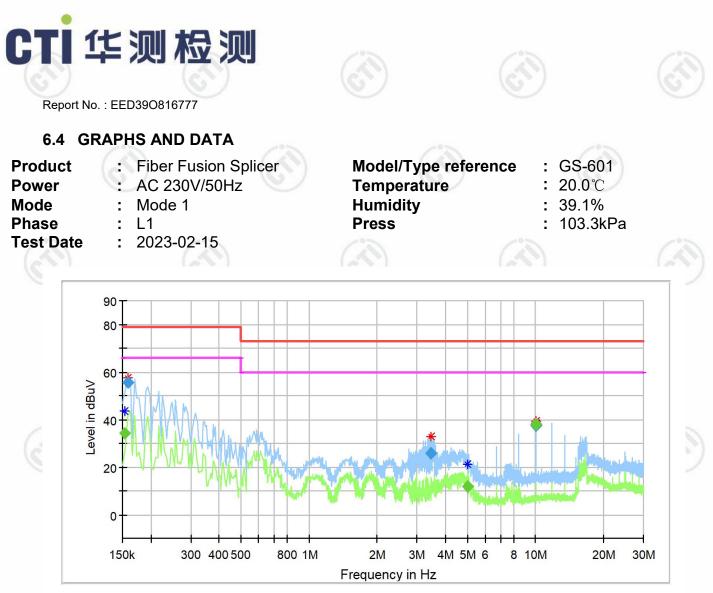
Limits for class A Equipment

Note: 1. The lower limit shall apply at the transition frequencies.

6.2 BLOCK DIAGRAM OF TEST SETUP

6.3 TEST PROCEDURE

The Product was placed on a nonconductive table 0.8 m above the horizontal ground а reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

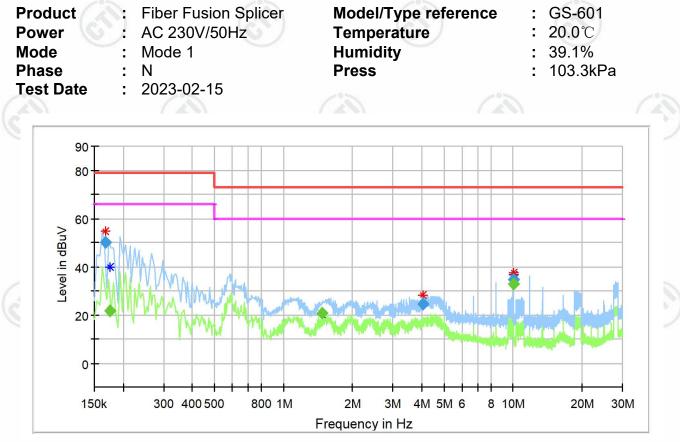

The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

- For each frequency whose maximum record was higher or close to limit, measure its С QP and AVG values and record.
- The Margin is calculated by adding the correct Factor. The basic equation with a d sample calculation is as follows:

Margin = Limit – Quasi Peak / Average

Correct Factor = LISN Factor + Pulse limiter Factor + Cable Factor

Final_Result


Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.154019		34.35	66.00	31.65	1000.0	9.000	L1	19.4
0.157956	55.75		79.00	23.25	1000.0	9.000	L1	19.4
3.479770	25.64	73	73.00	47.36	1000.0	9.000	L1	19.7
5.003608		11.91	60.00	48.09	1000.0	9.000	L1	19.7
10.067328	37.31		73.00	35.69	1000.0	9.000	L1	19.9
10.070550		37.91	60.00	22.09	1000.0	9.000	L1	19.9

Version 1.0

Page 12 of 43

Final Result

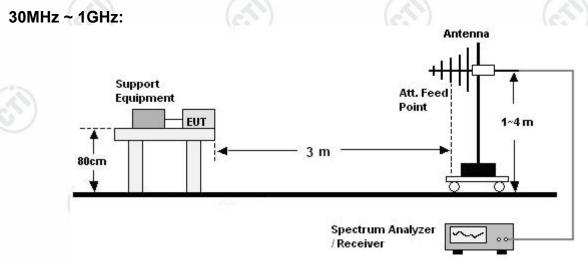
Frequency (MHz)	QuasiPeak (dBuV)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.168108	50.12		79.00	28.88	1000.0	9.000	N	19.4
0.174837		21.71	66.00	44.29	1000.0	9.000	N	19.4
1.475252		20.81	60.00	39.19	1000.0	9.000	N	19.6
4.070318	24.40		73.00	48.60	1000.0	9.000	N	19.6
10.071602	34.83	<u>s</u> ,	73.00	38.17	1000.0	9.000	N	20.0
10.072490		32.84	60.00	27.16	1000.0	9.000	N	20.0

Q/CTI LD-SUCEED-1007

Version 1.0

Page 13 of 43

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com


7. RADIATED EMISSION

7.1 LIMITS

Frequency (MHz)	Quasi-po	eak limits at 3m d	B(µV/m)
30-230		50	0
230-1000	(C)	57 🔘	9

Note: The lower limit shall apply at the transition frequencies.

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 TEST PROCEDURE

30MHz ~ 1GHz:

- a The Product was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

C

For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

d The Margin is calculated by adding the correct Factor. The basic equation with a sample calculation is as follows:
 Margin = Limit – Result
 Correct Factor = Preamplifier Factor– Antenna Factor–Cable Factor

Q/CTI LD-SUCEED-1007

Version 1.0

Report No. : EED390816777

7.4 GRAPHS AND DATA Product **Fiber Fusion Splicer** ł AC 230V/50Hz Power Mode Mode 1 2 Polarization : Horizontal Press 2023-02-15 **Test Date** :

Model/Type reference GS-601 2 **20.3**℃ Temperature 5 **Humidity** 39.2% 2 1 103.3kPa

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	140.2500	61.65	-16.20	45.45	50.00	-4.55	200	56	QP
2	164.8300	57.21	-16.24	40.97	50.00	-9.03	100	278	QP
3	428.6700	53.89	-10.84	43.05	57.00	-13.95	200	261	QP
4	519.8500	49.25	-8.54	40.71	57.00	-16.29	200	247	QP
5	783.6900	42.90	-4.66	38.24	57.00	-18.76	100	258	QP
6	825.4000	48.03	-3.86	44.17	57.00	-12.83	100	258	QP

Version 1.0

2

5

2

:

Product

Polarization

Test Date

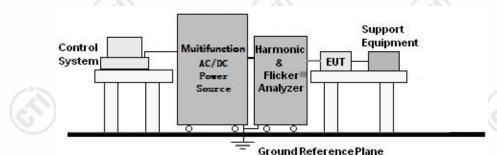
Power

Mode

Fiber Fusion Splicer AC 230V/50Hz Mode 1 Vertical 2023 02 15	Model/Type reference Temperature Humidity Press	:	GS-601 20.3℃ 39.2% 103.3kPa	
2023-02-15				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	57.1600	59.54	-15.65	43.89	50.00	-6.11	100	360	QP
2	140.2500	64.63	-16.20	48.43	50.00	-1.57	100	213	QP
3	156.7400	64.55	-16.23	48.32	50.00	-1.68	200	264	QP
4	519.8500	53.30	-8.54	44.76	57.00	-12.24	100	209	QP
5	825.4000	45.08	-3.86	41.22	57.00	-15.78	200	135	QP
6	957.3200	41.58	-2.36	39.22	57.00	-17.78	100	154	QP

Q/CTI LD-SUCEED-1007



8. HARMONIC CURRENT EMISSION

8.1 LIMITS

Please refer to EN IEC 61000-3-2:2019 Clause 7.

8.2 BLOCK DIAGRAM OF TEST SETUP

8.3 TEST PROCEDURE

- a The Product was placed on the top of a non-conductive table above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b The correspondent test program of test instrument to measure the current harmonics emanated from Product was chosen. The measure time shall be not less than the time necessary for the Product to be exercised.

8.4 TEST RESULTS

Product	: Fiber Fusion Splicer	Model/Type reference	: GS- 601
Power 💛	: AC 230V/50Hz	Temperature	: 20.0°C
Mode	: Mode 1	Humidity	: 39.4%
Test Date	: 2023-02-16	Press	: 103.2kPa
Pass.			

General Test Data: (Pha	ase	A)			
Vrms (Volts)	:	230.91 / 324.9 / 1.407	Frequency (Hz)	:	50.0001
I_rms (Amps)	:	0.298	Power (VA)	:	68.8 / 64.8
I_fund (Amps)		0.109 / 0.109	Power (W)	:	23.3
I_peak (Amps)	:	1.787 / 5.814	Power Factor	:	0.335
V-THD (%)	:	0.35	I-THD (%)	:	251.17
POHC (A)	:	0.099 (method C.3)	POHC Limit (A)	:	0.250
I-THC (A)	:	0.272	Meas. Pwr (Min / Max)	:	22.8W/23.3W
Phase angle of H5 (deg)	1	24.6			

Q/CTI LD-SUCEED-1007 Version 1.0 Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI华测检测

Report No. : EED39O816777

Current Harmonics (values at the end of test)

Harm No.	Harm. Ave.	Harm. Limit (100%)	% Of Limits	Result (Ave.)	Result (Max.)	Harm. Win.	Harm. Win. (150%)	% Of Max
2	0.0013	1.0800	0.1	PASS	PASS	0.0015	1.6200	0.1
3	0.1002	2.3000	4.4	PASS	PASS	0.1005	3.4500	2.9
4	0.0016	0.4300	0.4	PASS	PASS	0.0018	0.6450	0.3
5	0.0977	1.1400	8.6	PASS	PASS	0.0980	1.7100	5.7
6	0.0019	0.3000	0.6	PASS	PASS	0.0022	0.4500	0.5
7	0.0945	0.7700	12.3	PASS	PASS	0.0948	1.1550	8.2
8	0.0024	0.2300	1.0	PASS	PASS	0.0026	0.3450	0.8
9	0.0904	0.4000	22.6	PASS	PASS	0.0907	0.6000	15.1
10	0.0026	0.1840	1.4	PASS	PASS	0.0029	0.2760	1.0
11	0.0856	0.3300	25.9	PASS	PASS	0.0858	0.4950	17.3
12	0.0030	0.1530	2.0	PASS	PASS	0.0032	0.2295	1.4
13	0.0798	0.2100	38.0	PASS	PASS	0.0802	0.3150	25.5
14	0.0031	0.1310	2.4	PASS	PASS	0.0034	0.1965	1.7
15	0.0734	0.1500	49.0	PASS	PASS	0.0737	0.2250	32.8
16	0.0034	0.1150	3.0	PASS	PASS	0.0037	0.1725	2.2
17	0.0671	0.1320	50.8	PASS	PASS	0.0675	0.1980	34.1
18	0.0035	0.1020	3.5	PASS	PASS	0.0038	0.1530	2.5
19	0.0599	0.1180	50.8	PASS	PASS	0.0604	0.1770	34.1
20	0.0036	0.0920	4.0	PASS	PASS	0.0039	0.1380	2.8
21	0.0530	0.1070	49.5	PASS	PASS	0.0535	0.1605	33.3
22	0.0036	0.0830	4.3	PASS	PASS	0.0038	0.1245	3.1
23	0.0462	0.0970	47.6	PASS	PASS	0.0469	0.1455	32.2
24	0.0035	0.0760	4.6	PASS	PASS	0.0038	0.1140	3.3
25	0.0395	0.0900	43.9	PASS	PASS	0.0402	0.1350	29.8
26	0.0035	0.0700	5.0	PASS	PASS	0.0037	0.1050	3.5
27	0.0332	0.0830	40.0	PASS	PASS	0.0338	0.1245	27.1
28	0.0034	0.0650	5.2	PASS	PASS	0.0037	0.0975	3.8
29	0.0276	0.0770	35.9	PASS	PASS	0.0283	0.1155	24.5
30	0.0032	0.0610	5.2	PASS	PASS	0.0035	0.0915	3.8
31	0.0225	0.0720	31.3	PASS	PASS	0.0231	0.1080	21.4
32	0.0031	0.0570	5.4	PASS	PASS	0.0035	0.0855	4.1
33	0.0184	0.0680	27.0	PASS	PASS	0.0190	0.1020	18.6
34	0.0028	0.0540	5.2	PASS	PASS	0.0032	0.0810	3.9
35	0.0150	0.0640	23.5	PASS	PASS	0.0155	0.0960	16.2
36	0.0027	0.0510	5.2	PASS	PASS	0.0030	0.0765	3.9
37	0.0129	0.0600	21.6	PASS	PASS	0.0134	0.0900	14.9
38	0.0026	0.0480	5.4	PASS	PASS	0.0029	0.0720	4.0
39	0.0117	0.0570	20.4	PASS	PASS	0.0120	0.0855	14.1
40	0.0024	0.0460	5.3	PASS	PASS	0.0027	0.0690	4.0

Q/CTI LD-SUCEED-1007

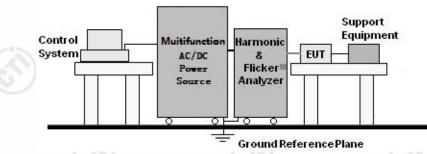
Version 1.0

Report No. : EED39O816777

Power Source Verification Data

Harm No.	Harm. Value	Harm. Limit	% Of Limits	% Of Vfund	Result
2	0.040	0.460	8.719	0.017	OK
3	0.769	2.070	37.173	0.333	OK
4	0.141	0.460	30.757	0.061	OK
5	0.037	0.920	4.049	0.016	OK
6	0.014	0.460	3.114	0.006	OK
7	0.111	0.690	16.078	0.048	OK
8	0.025	0.460	5.537	0.011	OK
9	0.031	0.460	6.739	0.013	OK
10	0.032	0.460	6.939	0.014	OK
11 🕥	0.118	0.230	51.382	0.051	OK
12	0.006	0.230	2.478	0.002	OK
13	0.037	0.230	16.227	0.016	OK
14	0.053	0.230	22.912	0.023	OK
15	0.057	0.230	24.629	0.025	OK
16	0.016	0.230	7.073	0.007	OK
17	0.081	0.230	35.290	0.035	OK
18	0.027	0.230	11.846	0.012	OK
19	0.035	0.230	15.047	0.015	OK
20	0.016	0.230	6.808	0.007	OK
21	0.028	0.230	12.064	0.012	OK
22	0.037	0.230	16.056	0.016	OK
23	0.025	0.230	10.847	0.011	OK
24	0.027	0.230	11.946	0.012	OK
25	0.017	0.230	7.590	0.008	OK
26	0.014	0.230	5.950	0.006	OK
27	0.010	0.230	4.354	0.004	OK
28	0.018	0.230	7.761	0.008	OK
29	0.033	0.230	14.449	0.014	OK
30	0.011	0.230	4.889	0.005	OK
31	0.019	0.230	8.266	0.008	OK
32	0.025	0.230	10.835	0.011	OK
33	0.016	0.230	6.928	0.007	OK
34	0.009	0.230	4.079	0.004	OK
35	0.020	0.230	8.590	0.009	ОК
36	0.018	0.230	8.009	0.008	OK
37	0.011	0.230	4.723	0.005	OK
38	0.011	0.230	4.874	0.005	OK
39	0.024	0.230	10.517	0.010	OK
40	0.012	0.230	5.119	0.005	ОК

Q/CTI LD-SUCEED-1007



VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND 9. FLICKER

9.1 LIMITS

Please refer to EN 61000-3-3:2013+A1:2019 Clause 5.

9.2 BLOCK DIAGRAM OF TEST SETUP

9.3 TEST PROCEDURE

- The Product was placed on the top of a non-conductive table above the ground and а operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- During the flick test, the measure time shall include that part of whole operation cycle b in which the Product produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

9.4 TEST R	ESULTS		
Product	: Fiber Fusion Splicer	Model/Type reference	: GS-601
Power	: AC 230V/50Hz	Temperature	: 20.0℃
Mode	: Mode 1	Humidity	: 39.4%
Test Date	: 2023-02-16	Press	: 103.2kPa

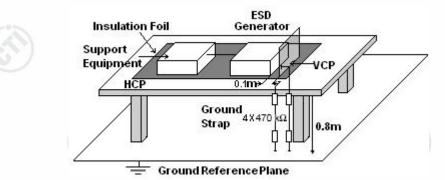
Vrms (Volts)	:	230.87	Frequency (Hz)	:	50.00
I_rms (Amps)	:	0.262	Power (W)		23.2
V-THD (%)	:	0.467	T-Max (ms)	0.00	0 (500)
dmax (%)	:	0.000 (4.000)	Hi dmax (%)	2	0.000 (4.000)
dc (%)	:	0.000 (3.300)	Hi dc (%)	:	0.000 (3.300)
Pst-1	:	0.039 (1.000)			
Plt	:	0.017 (0.650)			

10. IMMUNITY TEST

	General Perfo	ormance Criteria	
Product Standard		EN 61326-1:2013	
CRITERION A	No degradation of performance level specifie as intended. The performance level specifie performance. If the minimuloss is not specified by the	rmance or loss of fund d by the manufacturer, whance level may be replace im performance level or the manufacturer, either of t d documentation and what	d during and after the test. tion is allowed below a hen the equipment is used ed by a permissible loss of the permissible performance these may be derived from the user may reasonably
CRITERION B	degradation of performance level specified by the man The performance level ma During the test, degradation actual operating state or so level or the permissible per either of these may be der	e or loss of function is all ufacturer, when the equip y be replaced by a permis on of performance is howe stored data is allowed. If rformance loss is not spe ived from the product des	ended after the test. No owed below a performance oment is used as intended. ssible loss of performance. ever allowed. No change of the minimum performance cified by the manufacturer, cription and documentation the equipment if used as
CRITERION C	Temporary loss of function or can be restored by the c		function is self-recoverable
(I)			

Page 22 of 43

10.1 ELECTROSTATIC DISCHARGE IMMUNITY


10.1.1 TEST SPECIFICATION

Basic Standard Test Port Discharge Impedance

Discharge Period

- EN 61326-1:2013 & IEC 61000-4-2:2008
- : Enclosure port
- Discharge Impedance Discharge Mode
- : 330 ohm / 150 pF
- : Single Discharge : one second betwe
 - one second between each discharge

10.1.2 BLOCK DIAGRAM OF TEST SETUP

10.1.3 TEST PROCEDURE

Q/CTI LD-SUCEED-1007

- a Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

c The time interval between two successive single discharges was at least 1 second.

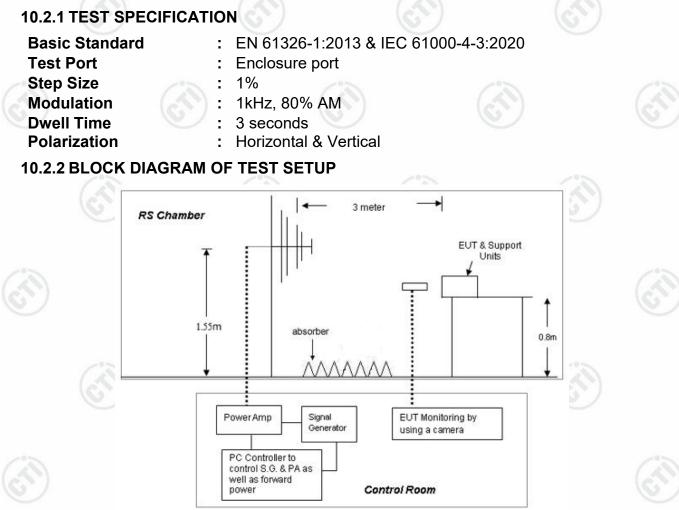
- d The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

Version 1.0

Dischar	-		Voltago	No. of Discharge	Poquiro	d Dorforn	nanco
12		13		<u>/````````````````````````````````````</u>	13		-
Test Date	:	2022-11-03		Press	:	102.1kPa	
Mode	:	Mode 1		Humidity	:	46.4%	
Power	Y.	AC 230V/50Hz		Temperature	:	23.2℃	
Product	(A)	Fiber Fusion Splice	er	Model/Type refere	nce :	GS-601	

Discharge Method	Discharge Position	Voltage (±kV)	per polarity (Each Point)	Required Criterion	Performance Criterion
1	Indirect Discharge VCP	± 4	25	В	A
Contact Discharge	Indirect Discharge HCP	± 4	25	В	A
J. J	Conductive Surfaces	± 4	25	В	A
Air Discharge	Slots, Apertures, and Insulating Surfaces	± 8	10	В	A
	(6.2)		6.2	10.21	0

Q/CTI LD-SUCEED-1007



Version 1.0

10.2 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY

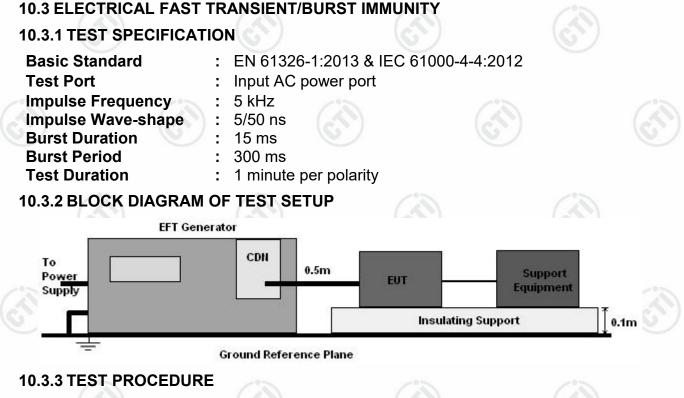
10.2.3 TEST PROCEDURE

a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3m or 1m from the Product.

b. The frequency range is swept from 80MHz to1000MHz, 1400MHz to 2700MHz,with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.

c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.

Report No. : EED39O816777


10.2.4 RESULT & PERFORMANCE

Power A Mode : M	iber Fusion Splice C 230V/50Hz lode 1 023-02-16	r Model/T Temper Humidit Press	ature Sy	: GS-601 : 20.0℃ : 40.8% : 103.2kPa
Frequency (MHz)	Position	Field Strength (V/m)	Required Criterion	Performance Criterion
80 - 1000	Front, Back, Left, Right	10	A	A
1400 2000	Front, Back,	2		

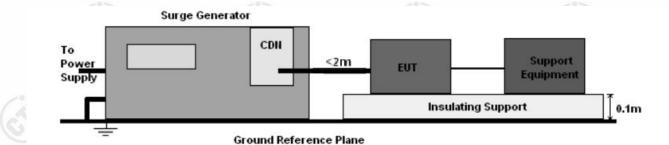
1400 - 2000	Front, Back,	2	•	A	
	Left, Right	3	A		
2000 - 2700	Front, Back,	1		A (3	
	Left, Right		A (3)		

- a The Product and support units were located on a non-conductive table above ground reference plane.
- b A 0.5m-long power cord was attached to Product during the test.

10.3.4 RESULTS & PERFORMANCE

Product	:	Fiber Fusion Splicer	Model/Type reference	21	GS-601	
Power	:	AC 230V/50Hz	Temperature	:	20.0 ℃	
Mode	:	Mode 1	Humidity	:	39.4%	
Test Date	÷	2023-02-16	Press	:	103.2kPa	

Port type	Coupling	Voltage (kV)	Polarity	Required Criterion	Performance Criterion
	L	2		В	A
AC port	N 📀	2	<u>C</u> ±	в	А 📀
_	L+N	2	±	В	А



CTI 华测 检测 Report No.: EED390816777	(A)	
10.4 SURGE IMMUNITY 10.4.1 TEST SPECIFICATIO		
Basic Standard:Test Port:Wave-Shape:Pulse Repetition Rate:Test Events:	EN 61326-1:2013& IEC 61000-4 Input AC power port Open Circuit Voltage: 1.2 / 50 us 1 pulse / min. 5 pulses (positive & negative) for	

10.4.2 BLOCK DIAGRAM OF TEST SETUP

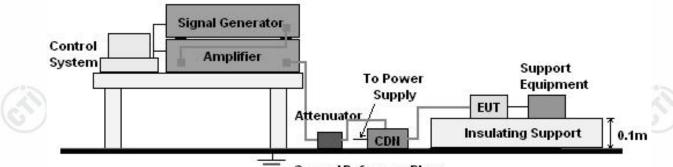
10.4.3 TEST PROCEDURE

- a The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.
- b The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

10.4.4 RESULTS & PERFORMANCE

Fiber Fusion Splicer AC 230/50Hz	Model/Type reference Temperature		GS-601 20℃
 Mode 1 2023-02-16	Humidity Press	-	39.4% 103.2kPa

(Port type	Coupling Line	Voltage (kV)	Polarity	Phase Angle	Required Criterion	Performance Criterion
N	AC port	L - N	1	±	0°, 90°, 180°, 270°	В	A



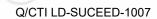
10.5 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELDS

10.5.1 TEST SPECIFICATION

Basic Standard	: EN 61326-1:2013 & IEC 61000-4-6:2013
Test Port	: Input AC power port
Step Size	: 1%
Modulation	: 1kHz, 80% AM
Dwell Time	: 3 seconds

10.5.2 BLOCK DIAGRAM OF TEST SETUP

Ground Reference Plane


10.5.3 TEST PROCEDURE

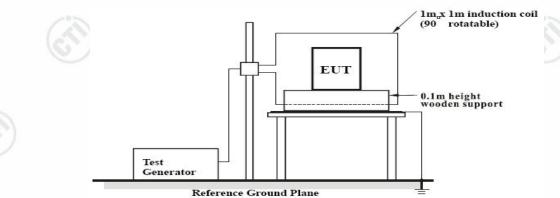
- a The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b The frequency range is swept from 150 kHz to 80MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

10.5.4 RESULTS & PERFORMANCE

Product	: Fiber Fusion Splicer	Model/Type reference	: GS-601
Power	: AC 230/50Hz	Temperature	: 22.8℃
Mode	: Mode 1	Humidity	: 47.6%
Test Date	: 2022-11-01	Press	: 102.3kPa

Inject Line	Frequency (MHz)	Voltage Level (V)	Required Criterion	Performance Criterion
AC port	0.15 ~ 80	3	A	A

10.6 POWER-FREQUENCY MAGNETIC FIELDS IMMUNITY

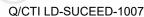

2

10.6.1 TEST SPECIFICATION

Basic Standard Test Port Power Frequency Duration Direction

- EN 61326-1:2013 & IEC 61000-4-8:2009
- Enclosure port
- : 50Hz
- : 1 Min
 - X axis; Y axis; Z axis

10.6.2 BLOCK DIAGRAM OF TEST SETUP



10.6.3 TEST PROCEDURE

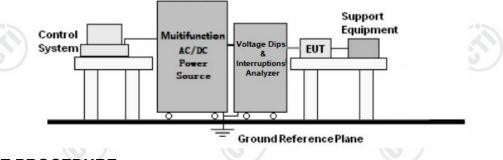
- a The Product and support units were located on a table, 0.8m away from ground floor.
- b The Product is configured and connected to satisfy its functional requirements. It shall be place on the GRP with the interposition of a 0.1m thickness insulating support (e.g. dry wood)
- c Setting the parameter of tests and then perform the test software of test simulator.
- d The induction coil shall enclose the Product placed at its center.

10.6.4 RESULTS & PERFORMANCE

Product Power Mode Test Date		Fiber Fusion Splicer AC 230/50Hz Mode 1 2022-11-01	Model/Typ Temperatu Humidity Press	ire :	GS-601 22.8℃ 47.6% 102.3kPa
	Direction	Field Strength (A/m)	Duration (Min)	Required Criterion	Performance Criterion
	Х	30	1	А	A
	Y	30	1	A	A
	z	30	1	A	A

10.7 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS

IMMUNITY


10.7.1 TEST SPECIFICATION

 Basic Standard
 :
 EN 61326-1:2013 & IEC 61000-4-11:2020

 Test Ports
 :
 AC port

 Phase Angle
 :
 0°

 10.7.2 BLOCK DIAGRAM OF TEST SETUP

10.7.3 TEST PROCEDURE

- a The Product and support units were located on a non-conductive table above ground floor.
- b Set the parameter of tests and then perform the test software of test simulator.
- c Conditions changes to occur at 0 degree crossover point of the voltage waveform.

10.7.4 RESULTS & PERFORMANCE

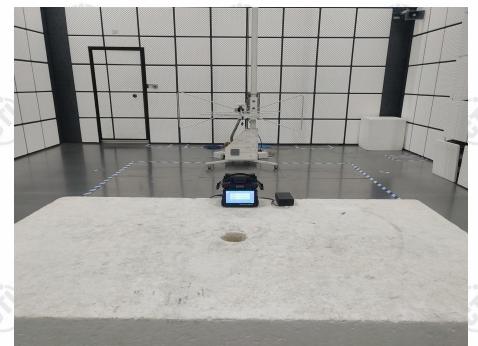
Product	: Fiber Fusion Splicer	Model/Type reference		GS-601
Power	: AC 100V/50Hz	Temperature	1	20 °C
Mode	: Mode 1	Humidity	:	39.4%
Test Date	: 2023-02-16	Press	:	103.2kPa

Test Level % Un	Reduction (%)	Number of cycles 50Hz	Required Criterion	Performance Criterion
0	100	1	В	А
40	60	10	c 🔿	A (a
70	30	25	С	А
0	100	250	С	A
	6	12		

Q/CTI LD-SUCEED-1007

Product Power Mode Test Date	 Fiber Fusion Splic AC 240V/50Hz Mode 1 2023-02-16 	er Model/ Tempe Humid Press		: GS-601 : 20℃ : 39.4% : 103.2kPa	
Test Level % Un	Reduction (%)	Number of cycles 50Hz	Required Criterion	Performance Criterion	
0	100	1	В	A	
40	60	10	С	A	
70	30	25	с	A	
0	100	250	С	A	
A				· /	

Q/CTI LD-SUCEED-1007

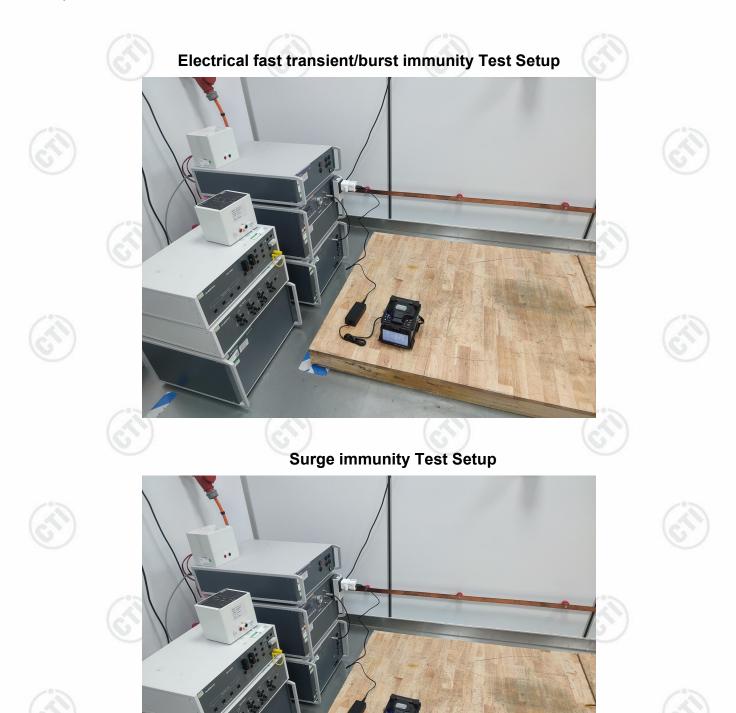


APPENDIX 1 PHOTOGRAPHS OF PRODUCT

Conducted Emission Test Setup

Radiated Emission Test Setup

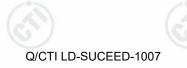
Radiated, radio-frequency, electromagnetic field immunity Test Setup



Immunity to conducted disturbances, induced by radio-frequency fields Test Setup

Power-frequency magnetic fields immunity Test Setup

Voltage dips, short interruptions and voltage variations Immunity Test Setup


Report No. : EED39O816777

APPENDIX 2 PHOTOGRAPHS OF PRODUCT View of Product-1

View of Product-2

Version 1.0

Page 41 of 43

View of Product-9

The testing data and results in this report are just for scientific research, education, internal quality control and product development etc.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

